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The purpose of this survey talk is to introduce a new and rather sur-
prising connection between Logic, Geometry, and Algebra which has
recently come to light in the form of an interpretation of the construc-
tive type theory of Per Martin-Löf into homotopy theory, resulting in
new examples of certain algebraic structures which are important in
topology. This connection was discovered quite recently, and various
aspects of it are now under active investigation, in particular in con-
nection with the Univalent Foundations program.

1. Type Theory and Homotopy

1.1. Type theory. Recall that Martin-Löf constructive type the-
ory is a formal system consisting of the following data:

Types: X, Y, . . . , A×B, A→ B, . . .

Terms: x : A, b : B, 〈a, b〉, λx.b(x)

Dependent Types: x : A ` B(x)

x : A, y : B(x) ` C(x, y)

x : A `
∑
y:B(x)

C(x, y)

x : A `
∏

y:B(x)

C(x, y)

The dependent types are regarded as indexed families of types.
There are simple type forming operations A×B and A→ B, as well as
operations on dependent types including sum

∑
x:AB(x) and product∏

x:AB(x) types. There are also dependent terms and term-forming
operations. Finally, there are equations s = t : A between terms of the
same type, as in any algebraic theory.
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1.2. Curry-Howard. The system has a curious dual interpretation:

• once as mathematical objects: types or sets and their terms
or elements, which are being constructed,
• once as logical objects: formulas or propositions and their

proofs or verifications, which are being derived.

This is known as the Curry-Howard correspondence or the Prop-
ositions-as-Types interpretation. This is what is responsible for the
“constructive” character of the system: a proof that something or a
certain kind exists, for instance, carries with it an instance of such a
thing.

According to the second, logical, interpretation, we therefore have
first propositional, and then predicate logic, with quantifiers ∀
and ∃. It’s now natural from the logical point of view to add a primitive
relation of equality between terms of the same type:

x, y : A ` IdA(x, y)

Under the first, mathematical, interpretation, this can be read as the
type of proofs that x = y.

The rules for this type are such that terms a and b that are defini-
tially equal a = b are also propositionally equal, in the sense that
their identity type IdA(a, b) is inhabited by a term:

a = b =⇒ t : IdA(a, b) (for some t)

But the converse is generally not true — this is known as intension-
ality. Forcing the converse by adding a rule of extentionality spoils
some of the computational virtues of the system, such as the decid-
ability of type-checking. Intensionality gives rise to a structure within
type theory of great complexity and interest. Indeed, it is a structure
that has arisen independently elsewhere in mathematics twice: namely
in topology and in higher category theory.

1.3. The homotopy interpretation (I). Suppose we have terms of
ascending identity types:

a, b : A

p, q : IdA(a, b)

α, β : IdIdA(a,b)(p, q)

. . . : IdIdId... (. . .)

Now consider the following interpretation:
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Types ; Spaces

Terms ; Maps

a : A ; Points a ∈ A
p : IdA(a, b) ; Paths p : a→ b

α : IdIdA(a,b)(p, q) ; Homotopies α : p⇒ q

...

A •
a

•b
p

��

q

@@

��

α

This homotopy interpretation turns out to work very well —
indeed, so well that the type theory seems to capture a certain logic
of homotopy that was not previously formalized or even recognized.
It allows one to use the system to reason formally about homotopy in
a way that, moreover, can even be implemented on a computer using
existing proof assistants right out of the box.

Let us see how to interpret the rest of the type theory, namely de-
pendent types and identity types. First, we have the following:

1.3.1. Rules for identity types.

A : type
Id formation

x, y : A ` IdA(x, y) : type

a : A Id introduction
r(a) : IdA(a, a)

x, y : A, z : IdA(x, y) ` B(x, y, z) : type

x : A ` b(x) : B
(
x, x, r(x)

)
Id elimination

x, y : A, z : IdA(x, y) ` J(b, x, y, z) : B(x, y, z)

a : A Id conversion
J
(
b, a, a, r(a)

)
= b(a) : B

(
a, a, r(a)

)
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The introduction rule provides a witness r(a) that a is identical to
itself, called the reflexivity term. The distinctive elimination rule can
be recognized as Lawvere’s adjoint rule; it has the form:

x = y B(x, x)

B(x, y)

The final conversion rule is a sort of book-keeping for proof terms.

These rules force the dependent types to have the following lifting
property:

p : IdA(a, b)

x : A ` B(x)

x : A ` λy.y : B(x)→ B(x)

p∗ : B(a)→ B(b) a : B(a)

p∗(a) : B(b)

B

��

a // p∗(a)

A a
p
// b

And with a bit more fuss, one can even lift the whole “path” p :
a→ b. This essentially forces the interpretation of dependent types as
fibrations:

Dependent types x : A ` B(x) ; Fibrations B

��
A

To complete the interpretation, how shall we interpret the dependent
Identity type? We require a fibration of the form:

IdA

��
A× A

Since the fiber IdA(a, b) over a pair (a, b) is to be the space of paths
from a to b, we take the total fibration to be the path space fibration,

IdA = AI // A× A,
which classifies homotopies between maps into A. Thus terms of type
AI are homotopies between their two projections.
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1.4. The homotopy interpretation (II). That’s the basic idea, ex-
cept that we don’t really use concrete spaces and homotopy, of course,
but rather their abstract description in terms of Quillen model cate-
gories. This has two benefits worth mentioning: first, there is the usual
advantage of axiomatics, namely that we thereby subsume a range of
different models. Secondly, it allows a completeness theorem that I’ll
discuss further below.

In fact, all that is really required is half of the Quillen model category
structure, namely a weak factorization system (L,R) in a category C:

L ⊂ - C � ⊃R

which consists of two collections L (the “left-class”, regarded as trivial
cofibrations) and R (the “right-class”, regarded as fibrations) of maps
in C such that:

(1) Every map f : A → B has a factorization as f = p ◦ i, where
i ∈ L and p ∈ R.

A
i //

f   @
@@

@@
@@

C

p

��
B,

(2) given maps f : A → B in L and g : C → D in R in a commu-
tative square,

A //

f

��

C

g

��
B

j

>>

// D

there’s a diagonal filler j as indicated.

Now we can give the type theory a Fibrations as Types interpre-
tation:

Closed Types A ; R-objects A // 1

Dependent Types x : A ` B(x) ; R-Maps B // A

Dependent Terms x : A ` b(x) : B(x) ; Sections A
b //

1 ��@
@@

@@
@@

B

��
A
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The Id-type is interpreted by factoring the diagonal ∆ into a “path
object” according to axiom (1):

A
r //

∆ ##F
FFFFFFFF AI

p

��
A× A,

The formation and introduction rules are thereby satisfied.

For the elimination rule, we have the following set-up: the premises
describe a fibration q : B → AI together with a map b : A → B such
that q ◦ b = r. This yields the following (outer) commutative square:

A
b //

r
��

B

q

��
AI

j

==

=
// AI

Because q is a right map and r is, by definition, a left map, by axiom
(2) there exists a diagonal filler j, which we choose as the interpretation
of the elimination term:

x, y : A, z : IdA(x, y) ` J(b, x, y, z) : B(x, y, z).

Commutativity of the bottom triangle is just the conclusion of the
elimination rule, namely j is a section of q. And the commutativity of
the top triangle is the required conversion rule:

x : A ` J(b, x, x, r(x)) = b(x) : B(x, x, r(x)).

We’ve now basically shown the following:

Theorem 1.1 (Awodey & Warrren 2008). Martin-Löf type theory has
a sound interpretation into any Quillen model category (even into any
weak factorization system).

To introduce some logician’s terminology, the notion of soundness
means that a formally provable statement is always true under the
specified interpretation:

provable ===
sound
⇒ true in all models

Thus here, if a certain type can be shown to have a term, then the
corresponding interpretation must always have a point.

The converse notion is completeness: a statement is provable if its
interpretation is always true:

provable ⇐====
complete

true in all models
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Theorem 1.2 (Garner & Gambino 2009). The homotopy interpreta-
tion of Martin-Löf type theory is essentially complete with respect to
models in weak factorization systems.

There is a technical issue of selecting path objects AI and diagonal
fillers j as interpretations of IdA-types and J-terms in a “coherent”
way, i.e. respecting substitution of terms for variables; various solutions
are available. Being able to prove this fundamental result is the second
reason for using abstract homotopy for our semantics.

Summing up this first half of the lecture, we have now seen that:

Martin-Löf type theory provides a “logic of homotopy”.

2. Type Theory and Higher Categories

It’s now reasonable to ask, how expressive is the logical system as
a language for homotopy theory? What homotopically relevant facts,
properties, and constructions are logically expressible?

2.1. Fundamental groupoids. Let’s return to the system of identity
terms of various orders:

a, b : A

p, q : IdA(a, b)

α, β : IdIdA(a,b)(p, q)

ϑ : IdIdId... (α, β)

...

These can be represented suggestively by the following figure.

•
a

•
a

•
b
//

p
•
a

•
b

p

$$

q

::��
α

�!

α

}�

β_ *4
ϑ

•
a

•
b

p

��

q

DD

Just as in homotopy, the terms of the lowest orders bear the structure
of a groupoid: the fundamental groupoid of the type A. Indeed,
the laws of identity provable in the system correspond to the groupoid
structure:
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r : Id(a, a) reflexivity a→ a

s : Id(a, b)→ Id(b, a) symmetry a� b

t : Id(a, b)× Id(b, c)→ Id(a, c) transitivity a→ b→ c

But also just as in homotopy, the groupoid laws of associativity,
inverse, and unit only hold up to the existence of a term of the next
higher order — i.e. “up to homotopy”.

Indeed, the entire system of terms of all orders forms a globular set:

A⇔ IdA ⇔ IdIdA ⇔ . . .

which bears the structure of a weak infinite-dimensional groupoid:

Theorem 2.1 (Lumsdaine, Garner & van den Berg, 2009). The system
of all identity terms of over any fixed type is a weak ω-groupoid.

What we are seeing here is that the fundamental groupoid of a space
is really a construction in what I called the logic of homotopy, since
it can be constructed directly in the logical system and then inter-
preted in any particular space. The topological fact that points, paths,
and (higher) homotopies do not form an actual groupoid, but only
a weak, higher-dimensional groupoid, is not merely analogous to the
type-theoretic case; it’s an instance of the same phenomenon.

2.2. Martin-Löf complexes. Next we ask, how special are the weak
ω-groupoids arising in type theory? In light of the soundness and
completeness results of the first part, it stands to reason that they
are quite general. Now, the so-called “Homotopy Hypothesis” of
Grothendieck states that arbitrary weak ω-groupoids classify homo-
topy types of spaces. We can formulate an analogous “Type Theory
Hypothesis” – at least as a motivating conjecture – stating that the
logical groupoids constructed in type theory are essentially the same as
the arbitrary ones. I will conclude by sketching a way of making this
conjecture more precise.

Given any globular set:

A• = A0 ⇔ A1 ⇔ A2 ⇔ . . .
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We make a type theory T(A•) over one basic type A, with the elements
of the various An as primitive constants:

A0 3 a, a′, . . . : A

A1 3 p, p′, . . . : IdA(s(p), t(p))

...

where s, t : An ⇒ An−1 are the (n-dimensional) source and target maps.
Now we “turn the crank” and generate a weak ω-groupoid consisting

of terms of Id-types of all orders, derived from these basic terms. The
resulting groupoid,

G(A•),

is the logical groupoid generated by the globular set A•.
This is a neat way to make weak ω-groupoids, by the way, because

it is in a sense mechanical. Given any ∞-graph A•, a computer can
be programmed to systematically generate the cells of the weak ω-
groupoid G(A•) and calculate their relations.

Now this construction is functorial in A•,

G : GSets //GSets,

and it determines a monad on the globular sets. The algebras for
this “free logical groupoid monad” – called Martin-Löf complexes –
are the logical groupoids generated from systems of type theory with
primitive terms of various identity types and equations among terms.

Now we can formulate our conjecture more precisely:

Conjecture 2.2.

(1) The free Martin-Löf complex on a globular set is equivalent to
the free weak ω-groupoid.

(2) The category of all Martin-Löf complexes is equivalent to that
of all weak ω-groupoids.

Of course, there is still quite a bit of slack in the word equivalent.
An even more precise formulation can already be proved when we re-
strict to the 1-dimensional case. For such truncated structures, we have
namely:

Theorem 2.3 (Awodey, Hofstra & Warren, 2010).

(1) The free 1-dimensional Martin-Löf complex on a graph is equiv-
alent to the free groupoid.

(2) The category of all 1-dimensional Martin-Löf complexes admits
a Quillen model structure, and is Quillen-equivalent to the cat-
egory of groupoids.
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In this precise sense, for the case of 1-dimensional structures at least,
the type-theoretically generated groupoids essentially agree with the
algebraic ones. Obviously, one should now proceed to compare the
type theories truncated at higher dimensions and the corresponding
higher groupoids.

To conclude, we have seen that the homotopy interpretation of Martin-
Löf type theory captures the important fundamental (weak ω-) groupoid
construction, and therewith a clearly significant amount of homotopy
theory.

3. Further Topics

3.1. The entire classifying category C(T) of a type theory T is an
(∞, 1)-category (Lumsdaine 2010).

3.2. One can also show that (the nerve of) C(T) is a quasi-category.
This should allow one to use the work of Joyal and Lurie to analyse the
other type-theoretic operations Σ,Π, W, U in terms of related categorical
concepts, as in theory of an ∞-topos.

3.3. This dovetails with Voevodsky’s Univalent Foundations program.


